Non-Bayesian Quickest Detection with Stochastic Sample Right Constraints

نویسندگان

  • Jun Geng
  • Lifeng Lai
چکیده

In this paper, we study the design and analysis of optimal detection scheme for sensors that are deployed to monitor the change in the environment and are powered by the energy harvested from the environment. In this type of applications, detection delay is of paramount importance. We model this problem as quickest change detection problem with a stochastic energy constraint. In particular, a wireless sensor powered by renewable energy takes observations from a random sequence, whose distribution will change at a certain unknown time. Such a change implies events of interest. The energy in the sensor is consumed by taking observations and is replenished randomly. The sensor cannot take observations if there is no energy left in the battery. Our goal is to design a power allocation scheme and a detection strategy to minimize the worst case detection delay, which is the difference between the time when an alarm is raised and the time when the change occurs. Two types of average run length (ARL) constraint, namely an algorithm level ARL constraint and an system level ARL constraint, are considered. We propose a low complexity scheme in which the energy allocation rule is to spend energy to take observations as long as the battery is not empty and the detection scheme is the Cumulative Sum test. We show that this scheme is optimal for the formulation with the algorithm level ARL constraint and is asymptotically optimal for the formulations with the system level ARL constraint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quickest Change Detection

The problem of detecting changes in the statistical properties of a stochastic system and time series arises in various branches of science and engineering. It has a wide spectrum of important applications ranging from machine monitoring to biomedical signal processing. In all of these applications the observations being monitored undergo a change in distribution in response to a change or anom...

متن کامل

Quickest Detection with Social Learning: Interaction of local and global decision makers

We consider how local and global decision policies interact in stopping time problems such as quickest time change detection. Individual agents make myopic local decisions via social learning, that is, each agent records a private observation of a noisy underlying state process, selfishly optimizes its local utility and then broadcasts its local decision. Given these local decisions, how can a ...

متن کامل

General Asymptotic Bayesian Theory of Quickest Change Detection

The optimal detection procedure for detecting changes in independent and identically distributed (i.i.d.) sequences in a Bayesian setting was derived by Shiryaev in the 1960s. However, the analysis of the performance of this procedure in terms of the average detection delay and false alarm probability has been an open problem. In this paper, we develop a general asymptotic change-point detectio...

متن کامل

Bayesian Sequential Detection With Phase-Distributed Change Time and Nonlinear Penalty—A POMDP Lattice Programming Approach

We show that the optimal decision policy for several types of Bayesian sequential detection problems has a threshold switching curve structure on the space of posterior distributions. This is established by using lattice programming and stochastic orders in a partially observed Markov decision process (POMDP) framework. A stochastic gradient algorithm is presented to estimate the optimal linear...

متن کامل

Bayesian Sequential Detection with Phase-Distributed Change Time and Nonlinear Penalty -- A POMDP Approach

We show that the optimal decision policy for several types of Bayesian sequential detection problems has a threshold switching curve structure on the space of posterior distributions. This is established by using lattice programming and stochastic orders in a partially observed Markov decision process (POMDP) framework. A stochastic gradient algorithm is presented to estimate the optimal linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1302.3834  شماره 

صفحات  -

تاریخ انتشار 2012